Bibliography
[1] . Dynamic loading of deformable porous media can induce active solute transport. J Biomech, 41(15):3152-7, 2008. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18922531.
[2] . Validation of theoretical framework explaining active solute uptake in dynamically loaded porous media. J Biomech, 43(12):2267-73, 2010. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20553797.
[3] . A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials. J. Mech. Phys. Solids, 41(2):389-412, 1993.
[4] . A mixture theory analysis for passive transport in osmotic loading of cells. J Biomech, 39(3):464-75, 2006. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16389086.
[5] . Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J Biomech Eng, 131(6):061003, 2009. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19449957.
[6] . Multigenerational interstitial growth of biological tissues. Biomech Model Mechanobiol, 9(6):689-702, 2010. URL https://www.ncbi.nlm.nih.gov/pubmed/20238138.
[7] . Anisotropic hydraulic permeability under finite deformation. Journal of biomechanical engineering, 132(11):111004, 2010. URL https://www.ncbi.nlm.nih.gov/pubmed/21034145.
[8] . Anisotropy of fibrous tissues in relation to the distribution of tensed and buckled fibers. J Biomech Eng, 129(2):240-9, 2007. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17408329.
[9] . On the theory of reactive mixtures for modeling biological growth. Biomech Model Mechanobiol, 6(6):423-45, 2007. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17206407.
[10] . Finite element implementation of mechanochemical phenomena in neutral deformable porous media under finite deformation. Journal of Biomechanical Engineering, 133(8):1005-1017, 2011.
[11] . Finite element algorithm for frictionless contact of porous permeable media under finite deformation and sliding. J. Biomech. Engn., 132(6):1006-1019, 2010.
[12] . Equivalence between short-time biphasic and incompressible elastic material responses. J Biomech Eng, 129(3):405-12, 2007.
[13] . Solute transport across a contact interface in deformable porous media. J Biomech, 45(6):1023-7, 2012.
[14] . Finite Element Framework for Computational Fluid Dynamics in FEBio. J Biomech Eng, 140(2), 2018.
[15] . Viscoelasticity using reactive constrained solid mixtures. J Biomech, 48(6):941-7, 2015.
[16] . A formulation of general shell elements—-the use of mixed interpolation of tensorial components. International journal for numerical methods in engineering, 22(3):697—722, 1986.
[17] . Patient-specific isogeometric fluid—structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput. Methods Appl. Mech. Engrg., 198(45):3534—3550, 2009.
[18] . Isogeometric fluid-structure interaction: theory, algorithms, and computations. Computational mechanics, 43(1):3—37, 2008.
[19] . An assumed strain approach avoiding artificial thickness straining for a non-linear 4-node shell element. Communications in Numerical Methods in Engineering, 11(11):899—909, 1995.
[20] A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comput. Methods Appl. Mech. Engrg, 130:57-79, 1996.
[21] . Shear deformable shell elements for large strains and rotations. International Journal for Numerical Methods in Engineering, 40(23):4427—4449, 1997.
[22] . Models and finite elements for thin-walled structures. Encyclopedia of Computational Mechanics Second Edition:1—86, 2018.
[23] . Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, 1997.
[24] . Theory of mixtures. Continuum physics, 3(Pt I), 1976.
[25] . Incompressible porous media models by use of the theory of mixtures. Int J Eng Sci, 18(9):1129-1148, 1980.
[26] . Continuous damage mechanics—-a tool to describe phenomena before crack initiation. Nuclear Engineering and Design, 64(2):233—247, 1981.
[27] . Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology, 28(3-4):241-62, 1991.
[28] . An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids, 48(12):2445—2465, 2000.
[29] . Conewise linear elastic materials. J Elasticity, 37(1):1-38, 1994.
[30] . Continuum theory of chemically reacting media — 1. Int J Eng Sci, 3:197 - 212, 1965.
[31] . A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput. Mech., 48(3):277—291, 2011.
[32] . Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol, 237(5):H620-31, 1979. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=495769.
[33] . Biomechanics : mechanical properties of living tissues. Springer-Verlag, 1993. URL https://www.loc.gov/catdir/enhancements/fy0814/92033749-t.html https://www.loc.gov/catdir/enhancements/fy0814/92033749-d.html.
[34] . Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Computer Methods in Applied Mechanics and Engineering, 190(13):1763—1783, 2000.
[35] . Passive material properties of intact ventricular myocardium determined from a cylindrical model. J Biomech Eng, 113(1):42-55., 1991. URL https://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=2020175.
[36] . The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J Biomech, 23(11):1145-56, 1990. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2277049.
[37] . Nonlinear solid mechanics: a continuum approach for engineering. Wiley, 2000. URL https://www.loc.gov/catdir/description/wiley035/00027315.html.
[38] . Nonlinear Incompressilbe Finite Element for Simulating Loading of Cardiac Tissue- part I: two Dimensional Formulation for Thin Myocardial Strips. Journal of Biomechanical Engineering, Transactions of the ASME, 110(1):57-61, 1988.
[39] . Nonlinear Finite Element Analysis of Shells: Part I. Three-dimensional Shells. Computer Methods in Applied Mechanics and Engineering, 26:331-362, 1980.
[40] . Determination of a constitutive relation for passive myocardium. I. A new functional form. Journal of Biomechanical Engineering, Transactions of the ASME, 112(3):333-339, 1990.
[41] . On constitutive Relations and Finite Deformations of Passive Cardiac Tissue: I. A Pseudostrain-Energy Function. Journal of Biomechanical Engineering, Transactions of the ASME, 109(4):298-304, 1987.
[42] . A generalized- method for integrating the filtered Navier—Stokes equations with a stabilized finite element method. Comput. Methods Appl. Mech. Engrg., 190(3):305—319, 2000.
[43] . Rupture time under creep conditions. International Journal of Fracture, 1958.
[44] . Nonequilibrium thermodynamics in biophysics. Harvard University Press, 1965.
[45] . A continuum based three-dimensional shell element for laminated structures. Computers & Structures, 71(1):43—62, 1999.
[46] . Introduction to continuum mechanics. Butterworth-Heinemann/Elsevier, 2010.
[47] . Constitutive equations for fibrous connective tissues. J Biomech, 16(1):1-12, 1983. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=6833305.
[48] . A Theory of Gel Filtration and its Experimental Verification. J Chromatogr, 14:317-330, 1963.
[49] . Computational Contact and Impact Mechanics. Springer, 2002.
[50] . A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol., 1985.
[51] . How to use damage mechanics. Nuclear engineering and design, 80(2):233—245, 1984.
[52] . A simple quadrilateral shell element. Computers & Structures, 8(2):175—183, 1978.
[53] . Rigid bodies for metal forming analysis with NIKE3D. University of California, Lawrence Livermore Lab Rept, UCRL-JC-119862:1-8, 1995.
[54] . Mathematical Foundations of Elasticity. Dover Publications, 1994.
[55] . The solution of nonlinear finite element equations. Intl J Num Meth Eng, 14:1613-26, 1979.
[56] . Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering. J Biomech Eng, 125(5):602-14, 2003. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14618919.
[57] . Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. J. Biomech. Eng., 102:73-84, 1980.
[58] . Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering. Interface Focus, 6(1):20150063, 2016.
[59] . The partition of solutes between buffer solutions and solutions containing hyaluronic acid. Biochem J, 78:827-33, 1961. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=13730460.
[60] . Incompressible flow. John Wiley & Sons, 2006.
[61] . Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. J Biomech Eng, 120(1):62-70, 1998. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9675682.
[62] . An energy and momentum conserving method for rigid—flexible body dynamics. International Journal for numerical methods in engineering, 53(6):1393—1414, 2002.
[63] . Material characterization of human medial collateral ligament. J Biomech Eng, 120(6):757-63, 1998. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10412460.
[64] . Elements of hereditary solid mechanics. MIT Publishers, Moscow, 1980.
[65] . The finite element method in heat transfer and fluid dynamics. CRC Press, 2001. URL Publisher description https://www.loc.gov/catdir/enhancements/fy0646/00048638-d.html.
[66] . An introduction to continuum mechanics : with applications. Cambridge University Press, 2008. URL Table of contents only https://www.loc.gov/catdir/toc/ecip0720/2007025254.html Contributor biographical information https://www.loc.gov/catdir/enhancements/fy0729/2007025254-b.html Publisher description https://www.loc.gov/catdir/enhancements/fy0729/2007025254-d.html.
[67] . Quasi-incompressible finite elasticity in principal stretches: Continuum basis and numerical algorithms. Computer Methods in Applied Mechanics and Engineering, 85:273-310, 1991.
[68] . Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Computer methods in applied mechanics and engineering, 110(3-4):359—386, 1993.
[69] . The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Zeitschrift für angewandte Mathematik und Physik (ZAMP), 43(5):757—792, 1992.
[70] . On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Computer methods in applied mechanics and engineering, 60(2):153—173, 1987.
[71] . Strain-and stress-based continuum damage models—-I. Formulation. International journal of solids and structures, 23(7):821—840, 1987.
[72] . A class of mixed assumed strain methods and the method of incompatible modes. International journal for numerical methods in engineering, 29(8):1595—1638, 1990.
[73] . Continuum Theory of the Mechanics of Fibre-Reinforced Composites. Springer-Verlag, 1984.
[74] . A mixed finite element formulation of triphasic mechano-electrochemical theory for charged, hydrated biological soft tissues. Int J Numer Meth Eng, 45(10):1375-402, 1999. URL https://dx.doi.org/10.1002/(SICI)1097-0207(19990810)45:10<1375::AID-NME635>3.0.CO;2-7.
[75] . Physical chemistry : principles and applications in biological sciences. Prentice Hall, 1995.
[76] . The classical field theories. Springer, 1960.
[77] . A penetration-based finite element method for hyperelastic 3D biphasic tissues in contact. Part II: finite element simulations. J Biomech Eng, 128(6):934-42, 2006. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17154696.
[78] . Mechanical Characterization of Skin - Finite Deformations. J. Biomechanics, Vol. 3:111-124, 1970.
[79] . Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Engrg., 195(29):3776—3796, 2006.
[80] . Optimal solid shells for non-linear analyses of multilayer composites. I. Statics. Computer methods in applied mechanics and engineering, 192(9-10):975—1016, 2003.
[81] . Finite element implementation of incompressible, transversely isotropic hyperelasticity. Computer Methods in Applications of Mechanics and Engineering, 135:107-128, 1996.