Link Search Menu Expand Document
Theory Manual Version 3.4
 Section 8.2: The Levenberg-Marquardt Method Up Main page


[1] M. B. Albro, N. O. Chahine, R. Li, K. Yeager, C. T. Hung, G. A. Ateshian. Dynamic loading of deformable porous media can induce active solute transport. J Biomech, 41(15):3152-7, 2008. URL

[2] M. B. Albro, R. Li, R. E. Banerjee, C. T. Hung, G. A. Ateshian. Validation of theoretical framework explaining active solute uptake in dynamically loaded porous media. J Biomech, 43(12):2267-73, 2010. URL

[3] E.M. Arruda, M.C. Boyce. A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials. J. Mech. Phys. Solids, 41(2):389-412, 1993.

[4] G. A. Ateshian, M. Likhitpanichkul, C. T. Hung. A mixture theory analysis for passive transport in osmotic loading of cells. J Biomech, 39(3):464-75, 2006. URL

[5] G. A. Ateshian, V. Rajan, N. O. Chahine, C. E. Canal, C. T. Hung. Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J Biomech Eng, 131(6):061003, 2009. URL

[6] G. A. Ateshian, T. Ricken. Multigenerational interstitial growth of biological tissues. Biomech Model Mechanobiol, 9(6):689-702, 2010. URL

[7] G. A. Ateshian, J. A. Weiss. Anisotropic hydraulic permeability under finite deformation. Journal of biomechanical engineering, 132(11):111004, 2010. URL

[8] G. A. Ateshian. Anisotropy of fibrous tissues in relation to the distribution of tensed and buckled fibers. J Biomech Eng, 129(2):240-9, 2007. URL

[9] G. A. Ateshian. On the theory of reactive mixtures for modeling biological growth. Biomech Model Mechanobiol, 6(6):423-45, 2007. URL

[10] G.A. Ateshian, M. B. Albro, S.A. Maas, J.A. Weiss. Finite element implementation of mechanochemical phenomena in neutral deformable porous media under finite deformation. Journal of Biomechanical Engineering, 133(8):1005-1017, 2011.

[11] GA Ateshian, SA Maas, J.A. Weiss. Finite element algorithm for frictionless contact of porous permeable media under finite deformation and sliding. J. Biomech. Engn., 132(6):1006-1019, 2010.

[12] Gerard A Ateshian, Benjamin J Ellis, Jeffrey A Weiss. Equivalence between short-time biphasic and incompressible elastic material responses. J Biomech Eng, 129(3):405-12, 2007.

[13] Gerard A Ateshian, Steve Maas, Jeffrey A Weiss. Solute transport across a contact interface in deformable porous media. J Biomech, 45(6):1023-7, 2012.

[14] Gerard A Ateshian, Jay J Shim, Steve A Maas, Jeffrey A Weiss. Finite Element Framework for Computational Fluid Dynamics in FEBio. J Biomech Eng, 140(2), 2018.

[15] Gerard A Ateshian. Viscoelasticity using reactive constrained solid mixtures. J Biomech, 48(6):941-7, 2015.

[16] Klaus-Jürgen Bathe, Eduardo N Dvorkin. A formulation of general shell elements—-the use of mixed interpolation of tensorial components. International journal for numerical methods in engineering, 22(3):697—722, 1986.

[17] Y Bazilevs, JR Gohean, TJR Hughes, RD Moser, Y Zhang. Patient-specific isogeometric fluid—structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput. Methods Appl. Mech. Engrg., 198(45):3534—3550, 2009.

[18] Yuri Bazilevs, Victor M Calo, Thomas JR Hughes, Yongjie Zhang. Isogeometric fluid-structure interaction: theory, algorithms, and computations. Computational mechanics, 43(1):3—37, 2008.

[19] P Betsch, E Stein. An assumed strain approach avoiding artificial thickness straining for a non-linear 4-node shell element. Communications in Numerical Methods in Engineering, 11(11):899—909, 1995.

[20] P. Betsch, F. Gruttmann, Stein E. A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comput. Methods Appl. Mech. Engrg, 130:57-79, 1996.

[21] M Bischoff, E Ramm. Shear deformable shell elements for large strains and rotations. International Journal for Numerical Methods in Engineering, 40(23):4427—4449, 1997.

[22] Manfred Bischoff, E Ramm, J Irslinger. Models and finite elements for thin-walled structures. Encyclopedia of Computational Mechanics Second Edition:1—86, 2018.

[23] Javier Bonet, Richard D. Wood. Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, 1997.

[24] R.M. Bowen. Theory of mixtures. Continuum physics, 3(Pt I), 1976.

[25] Ray M. Bowen. Incompressible porous media models by use of the theory of mixtures. Int J Eng Sci, 18(9):1129-1148, 1980.

[26] Jean-Louis Chaboche. Continuous damage mechanics—-a tool to describe phenomena before crack initiation. Nuclear Engineering and Design, 64(2):233—247, 1981.

[27] Y I Cho, K R Kensey. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology, 28(3-4):241-62, 1991.

[28] John C Criscione, Jay D Humphrey, Andrew S Douglas, William C Hunter. An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids, 48(12):2445—2465, 2000.

[29] A. Curnier, He Qi-Chang, P. Zysset. Conewise linear elastic materials. J Elasticity, 37(1):1-38, 1994.

[30] A.C. Eringen, J.D. Ingram. Continuum theory of chemically reacting media — 1. Int J Eng Sci, 3:197 - 212, 1965.

[31] Mahdi Esmaily Moghadam, Yuri Bazilevs, Tain-Yen Hsia, Irene E Vignon-Clementel, Alison L Marsden. A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput. Mech., 48(3):277—291, 2011.

[32] Y. C. Fung, K. Fronek, P. Patitucci. Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol, 237(5):H620-31, 1979. URL

[33] Y. C. Fung. Biomechanics : mechanical properties of living tissues. Springer-Verlag, 1993. URL

[34] Oscar Gonzalez. Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Computer Methods in Applied Mechanics and Engineering, 190(13):1763—1783, 2000.

[35] J. M. Guccione, A. D. McCulloch, L. K. Waldman. Passive material properties of intact ventricular myocardium determined from a cylindrical model. J Biomech Eng, 113(1):42-55., 1991. URL

[36] M. H. Holmes, V. C. Mow. The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J Biomech, 23(11):1145-56, 1990. URL

[37] Gerhard A Holzapfel. Nonlinear solid mechanics: a continuum approach for engineering. Wiley, 2000. URL

[38] A. Horowitz, I. Sheinman, Y. Lanir, M. Perl, S. Sideman. Nonlinear Incompressilbe Finite Element for Simulating Loading of Cardiac Tissue- part I: two Dimensional Formulation for Thin Myocardial Strips. Journal of Biomechanical Engineering, Transactions of the ASME, 110(1):57-61, 1988.

[39] J.R. Hughes, Wing Kam Liu. Nonlinear Finite Element Analysis of Shells: Part I. Three-dimensional Shells. Computer Methods in Applied Mechanics and Engineering, 26:331-362, 1980.

[40] J. D. Humphrey, R. K. Strumpf, F. C. P. Yin. Determination of a constitutive relation for passive myocardium. I. A new functional form. Journal of Biomechanical Engineering, Transactions of the ASME, 112(3):333-339, 1990.

[41] J. D. Humphrey, F. C. P. Yin. On constitutive Relations and Finite Deformations of Passive Cardiac Tissue: I. A Pseudostrain-Energy Function. Journal of Biomechanical Engineering, Transactions of the ASME, 109(4):298-304, 1987.

[42] Kenneth E Jansen, Christian H Whiting, Gregory M Hulbert. A generalized- method for integrating the filtered Navier—Stokes equations with a stabilized finite element method. Comput. Methods Appl. Mech. Engrg., 190(3):305—319, 2000.

[43] Lazar M Kachanov. Rupture time under creep conditions. International Journal of Fracture, 1958.

[44] Aharon Katzir-Katchalsky, Peter F. Curran. Nonequilibrium thermodynamics in biophysics. Harvard University Press, 1965.

[45] S Klinkel, F Gruttmann, W Wagner. A continuum based three-dimensional shell element for laminated structures. Computers & Structures, 71(1):43—62, 1999.

[46] W. Michael Lai, David Rubin, Erhard Krempl. Introduction to continuum mechanics. Butterworth-Heinemann/Elsevier, 2010.

[47] Y. Lanir. Constitutive equations for fibrous connective tissues. J Biomech, 16(1):1-12, 1983. URL

[48] Torvard C. Laurent, Johan Killander. A Theory of Gel Filtration and its Experimental Verification. J Chromatogr, 14:317-330, 1963.

[49] Tod A. Laursen. Computational Contact and Impact Mechanics. Springer, 2002.

[50] Jean Lemaitre. A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol., 1985.

[51] Jean Lemaitre. How to use damage mechanics. Nuclear engineering and design, 80(2):233—245, 1984.

[52] Richard H MacNeal. A simple quadrilateral shell element. Computers & Structures, 8(2):175—183, 1978.

[53] B. N. Maker. Rigid bodies for metal forming analysis with NIKE3D. University of California, Lawrence Livermore Lab Rept, UCRL-JC-119862:1-8, 1995.

[54] J. E. Marsden, T. J. Hughes. Mathematical Foundations of Elasticity. Dover Publications, 1994.

[55] H. Matthies, G. Strang. The solution of nonlinear finite element equations. Intl J Num Meth Eng, 14:1613-26, 1979.

[56] R. L. Mauck, C. T. Hung, G. A. Ateshian. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering. J Biomech Eng, 125(5):602-14, 2003. URL

[57] V.C. Mow, S.C. Kuei, W.M. Lai, C.G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. J. Biomech. Eng., 102:73-84, 1980.

[58] Robert J Nims, Krista M Durney, Alexander D Cigan, Antoine Dusséaux, Clark T Hung, Gerard A Ateshian. Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering. Interface Focus, 6(1):20150063, 2016.

[59] A. G. Ogston, C. F. Phelps. The partition of solutes between buffer solutions and solutions containing hyaluronic acid. Biochem J, 78:827-33, 1961. URL

[60] Ronald L Panton. Incompressible flow. John Wiley & Sons, 2006.

[61] M. A. Puso, J. A. Weiss. Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. J Biomech Eng, 120(1):62-70, 1998. URL

[62] Michael Anthony Puso. An energy and momentum conserving method for rigid—flexible body dynamics. International Journal for numerical methods in engineering, 53(6):1393—1414, 2002.

[63] K. M. Quapp, J. A. Weiss. Material characterization of human medial collateral ligament. J Biomech Eng, 120(6):757-63, 1998. URL

[64] Yu N Rabotnov. Elements of hereditary solid mechanics. MIT Publishers, Moscow, 1980.

[65] J. N. Reddy, David K. Gartling. The finite element method in heat transfer and fluid dynamics. CRC Press, 2001. URL Publisher description

[66] J. N. Reddy. An introduction to continuum mechanics : with applications. Cambridge University Press, 2008. URL Table of contents only Contributor biographical information Publisher description

[67] J.C. Simo, R.L. Taylor. Quasi-incompressible finite elasticity in principal stretches: Continuum basis and numerical algorithms. Computer Methods in Applied Mechanics and Engineering, 85:273-310, 1991.

[68] JC Simo, F Armero, RL Taylor. Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Computer methods in applied mechanics and engineering, 110(3-4):359—386, 1993.

[69] JC Simo, Nils Tarnow. The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Zeitschrift für angewandte Mathematik und Physik (ZAMP), 43(5):757—792, 1992.

[70] JC Simo. On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Computer methods in applied mechanics and engineering, 60(2):153—173, 1987.

[71] Juan C Simo, JW Ju. Strain-and stress-based continuum damage models—-I. Formulation. International journal of solids and structures, 23(7):821—840, 1987.

[72] Juan C Simo, MS10587420724 Rifai. A class of mixed assumed strain methods and the method of incompatible modes. International journal for numerical methods in engineering, 29(8):1595—1638, 1990.

[73] Anthony James Merril Spencer. Continuum Theory of the Mechanics of Fibre-Reinforced Composites. Springer-Verlag, 1984.

[74] D. N. Sun, W. Y. Gu, X. E. Guo, W. M. Lai, V. C. Mow. A mixed finite element formulation of triphasic mechano-electrochemical theory for charged, hydrated biological soft tissues. Int J Numer Meth Eng, 45(10):1375-402, 1999. URL<1375::AID-NME635>3.0.CO;2-7.

[75] I. Tinoco Jr., K. Sauer, J. C. Wang. Physical chemistry : principles and applications in biological sciences. Prentice Hall, 1995.

[76] C. Truesdell, R. Toupin. The classical field theories. Springer, 1960.

[77] K. Un, R. L. Spilker. A penetration-based finite element method for hyperelastic 3D biphasic tissues in contact. Part II: finite element simulations. J Biomech Eng, 128(6):934-42, 2006. URL

[78] D.R. Veronda, R.A. Westmann. Mechanical Characterization of Skin - Finite Deformations. J. Biomechanics, Vol. 3:111-124, 1970.

[79] Irene E Vignon-Clementel, C Alberto Figueroa, Kenneth E Jansen, Charles A Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Engrg., 195(29):3776—3796, 2006.

[80] L Vu-Quoc, XG Tan. Optimal solid shells for non-linear analyses of multilayer composites. I. Statics. Computer methods in applied mechanics and engineering, 192(9-10):975—1016, 2003.

[81] J.A. Weiss, B.N. Maker, S. Govindjee. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Computer Methods in Applications of Mechanics and Engineering, 135:107-128, 1996.