Prev Subsubsection 4.1.2.12: Transversely Isotropic Mooney-Rivlin Up Subsection 4.1.2: Uncoupled Materials Subsubsection 4.1.2.14: Uncoupled Solid Mixture Next
4.1.2.13 Transversely Isotropic Veronda-Westmann
The material type for transversely isotropic Veronda-Westmann materials is “trans iso Veronda-Westmann” [57]. The following material parameters must be defined:
<c1> | Veronda-Westmann coefficient 1 | [P] |
<c2> | Veronda-Westmann coefficient 2 | [ ] |
<c3> | Exponential stress coefficient | [P] |
<c4> | Fiber uncrimping coefficient | [ ] |
<c5> | Modulus of straightened fibers | [P] |
<k> | Bulk modulus | [P] |
<lam_max> | Fiber stretch for straightened fibers | [ ] |
<fiber> | Fiber distribution option. |
This uncoupled hyperelastic material differs from the Transversely Isotropic Mooney-Rivlin model in that it uses the Veronda-Westmann model for the isotropic matrix. The interpretation of the material parameters, except and is identical to this material model.
The fiber distribution option is explained in Section 4.1.1↑. An active contraction model can also be defined for this material. See the transversely isotropic Mooney-Rivlin model for more details (Section 4.1.2.12↑).
Example:
This example defines a transversely isotropic material model with a Veronda-Westmann basis. The fiber direction is implicitly implied as local.
<material id="3" type="trans iso Veronda-Westmann"> <c1>13.85</c1> <c2>0.0</c2> <c3>2.07</c3> <c4>61.44</c4> <c5>640.7</c5> <lam_max>1.03</lam_max> </material>