Link Search Menu Expand Document
Converted document
 Subsubsection 4.1.2.12: Transversely Isotropic Mooney-Rivlin Up Subsection 4.1.2: Uncoupled Materials Subsubsection 4.1.2.14: Uncoupled Solid Mixture 

4.1.2.13 Transversely Isotropic Veronda-Westmann

The material type for transversely isotropic Veronda-Westmann materials is “trans iso Veronda-Westmann” [57]. The following material parameters must be defined:
<c1> Veronda-Westmann coefficient 1 [P]
<c2> Veronda-Westmann coefficient 2 [ ]
<c3> Exponential stress coefficient [P]
<c4> Fiber uncrimping coefficient [ ]
<c5> Modulus of straightened fibers [P]
<k> Bulk modulus [P]
<lam_max> Fiber stretch for straightened fibers [ ]
<fiber> Fiber distribution option.
This uncoupled hyperelastic material differs from the Transversely Isotropic Mooney-Rivlin model in that it uses the Veronda-Westmann model for the isotropic matrix. The interpretation of the material parameters, except and is identical to this material model.
The fiber distribution option is explained in Section 4.1.1↑. An active contraction model can also be defined for this material. See the transversely isotropic Mooney-Rivlin model for more details (Section 4.1.2.12↑).
Example:
This example defines a transversely isotropic material model with a Veronda-Westmann basis. The fiber direction is implicitly implied as local.
<material id="3" type="trans iso Veronda-Westmann">
  <c1>13.85</c1>
  <c2>0.0</c2>
  <c3>2.07</c3>
  <c4>61.44</c4>
  <c5>640.7</c5>
  <lam_max>1.03</lam_max>
</material>


 Subsubsection 4.1.2.12: Transversely Isotropic Mooney-Rivlin Up Subsection 4.1.2: Uncoupled Materials Subsubsection 4.1.2.14: Uncoupled Solid Mixture