Prev Subsubsection 4.8.2.5: Referentially Orthotropic Permeability Up Subsection 4.8.2: Permeability Materials Subsection 4.8.3: Fluid Supply Materials Next
4.8.2.6 Referentially Transversely Isotropic Permeability
The material type for a biphasic material with strain-dependent permeability which is transversely isotropic in the reference configuration is “perm-ref-trans-iso”. The following material parameters need to be defined:
<perm0> | isotropic hydraulic permeability | [L /F t] |
<perm1A> | axial hydraulic permeability | [L /F t] |
<perm2A> | axial hydraulic permeability | [L /F t] |
<perm1T> | transverse hydraulic permeability | [L /F t] |
<perm2T> | transverse hydraulic permeability | [L /F t] |
<M0> | isotropic exponential strain-dependence coefficient ( ) | [ ] |
<MA> | axial exponential strain-dependence coefficient ( ) | [ ] |
<MT> | transverse exponential strain-dependence coefficient ( ) | [ ] |
<alpha0> | isotropic power-law exponent ( ) | [ ] |
<alphaA> | axial power-law exponent ( ) | [ ] |
<alphaT> | transverse power-law exponent ( ) | [ ] |
This material uses a strain-dependent permeability tensor that accommodates strain-induced anisotropy: where is the Jacobian of the deformation, i.e. where is the deformation gradient, and is the left Cauchy-Green tensor. is a second order tensor representing the spatial structural tensor describing the axial direction, given by where is a unit vector along the axial direction (defined as described in Section 4.1.1↑). Note that the permeability in the reference state ( is given by,
Example:
<permeability name="Permeability" type="perm-ref-trans-iso"> <perm0>0.002</perm0> <perm1A>0.01</perm1A> <perm2A>0.01</perm2A> <perm1T>0.001</perm1T> <perm2T>0.05</perm2T> <M0>1.0</M0> <MA>0.5</MA> <MT>1.5</MT> <alpha0>1.0</alpha0> <alphaA>0.5</alphaA> <alphaT>2.0</alphaT> </permeability>