Link Search Menu Expand Document
Converted document
 Subsubsection 4.8.2.5: Referentially Orthotropic Permeability Up Subsection 4.8.2: Permeability Materials Subsection 4.8.3: Fluid Supply Materials 

4.8.2.6 Referentially Transversely Isotropic Permeability

The material type for a biphasic material with strain-dependent permeability which is transversely isotropic in the reference configuration is “perm-ref-trans-iso”. The following material parameters need to be defined:
<perm0> isotropic hydraulic permeability [L /F t]
<perm1A> axial hydraulic permeability [L /F t]
<perm2A> axial hydraulic permeability [L /F t]
<perm1T> transverse hydraulic permeability [L /F t]
<perm2T> transverse hydraulic permeability [L /F t]
<M0> isotropic exponential strain-dependence coefficient ( ) [ ]
<MA> axial exponential strain-dependence coefficient ( ) [ ]
<MT> transverse exponential strain-dependence coefficient ( ) [ ]
<alpha0> isotropic power-law exponent ( ) [ ]
<alphaA> axial power-law exponent ( ) [ ]
<alphaT> transverse power-law exponent ( ) [ ]
This material uses a strain-dependent permeability tensor that accommodates strain-induced anisotropy: where is the Jacobian of the deformation, i.e. where is the deformation gradient, and is the left Cauchy-Green tensor. is a second order tensor representing the spatial structural tensor describing the axial direction, given by where is a unit vector along the axial direction (defined as described in Section 4.1.1↑). Note that the permeability in the reference state ( is given by,
Example:
<permeability name="Permeability" type="perm-ref-trans-iso">
  <perm0>0.002</perm0>
  <perm1A>0.01</perm1A>
  <perm2A>0.01</perm2A>
  <perm1T>0.001</perm1T>
  <perm2T>0.05</perm2T>
  <M0>1.0</M0>
  <MA>0.5</MA>
  <MT>1.5</MT>
  <alpha0>1.0</alpha0>
  <alphaA>0.5</alphaA>
  <alphaT>2.0</alphaT>
</permeability>


 Subsubsection 4.8.2.5: Referentially Orthotropic Permeability Up Subsection 4.8.2: Permeability Materials Subsection 4.8.3: Fluid Supply Materials