Link Search Menu Expand Document
Converted document
 Section C.2: Constants Up Main page


[1] Michael B Albro, Vikram Rajan, Roland Li, Clark T Hung, Gerard A Ateshian. Characterization of the Concentration-Dependence of Solute Diffusivity and Partitioning in a Model Dextran-Agarose Transport System. Cell Mol Bioeng, 2(3):295-305, 2009.

[2] E.M. Arruda, M.C. Boyce. A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials. J. Mech. Phys. Solids, 41(2):389-412, 1993.

[3] G. A. Ateshian, K. D. Costa. A frame-invariant formulation of Fung elasticity. J Biomech, 42(6):781-5, 2009. URL

[4] G. A. Ateshian, V. Rajan, N. O. Chahine, C. E. Canal, C. T. Hung. Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J Biomech Eng, 131(6):061003, 2009. URL

[5] G. A. Ateshian, T. Ricken. Multigenerational interstitial growth of biological tissues. Biomech Model Mechanobiol, 9(6):689-702, 2010. URL

[6] G. A. Ateshian, W. H. Warden, J. J. Kim, R. P. Grelsamer, V. C. Mow. Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J Biomech, 30(11-12):1157-64, 1997. URL

[7] G. A. Ateshian. Anisotropy of fibrous tissues in relation to the distribution of tensed and buckled fibers. J Biomech Eng, 129(2):240-9, 2007. URL

[8] G.A Ateshian, Morrison B., J.W. Holmes, C. T. Hung. Mechanics of cell growth. Mechanics Research Communications, 42:118-125, 2012.

[9] G.A. Ateshian, M. B. Albro, S.A. Maas, J.A. Weiss. Finite element implementation of mechanochemical phenomena in neutral deformable porous media under finite deformation. Journal of Biomechanical Engineering, 133(8):1005-1017, 2011.

[10] GA Ateshian, SA Maas, J.A. Weiss. Finite element algorithm for frictionless contact of porous permeable media under finite deformation and sliding. J. Biomech. Engn., 132(6):1006-1019, 2010.

[11] Gerard A Ateshian, Benjamin J Ellis, Jeffrey A Weiss. Equivalence between short-time biphasic and incompressible elastic material responses. J Biomech Eng, 129(3):405-12, 2007.

[12] Gerard A Ateshian, Steve Maas, Jeffrey A Weiss. Solute transport across a contact interface in deformable porous media. J Biomech, 45(6):1023-7, 2012.

[13] Gerard A Ateshian. Viscoelasticity using reactive constrained solid mixtures. J Biomech, 48(6):941-7, 2015.

[14] Klaus-Jürgen Bathe, Eduardo N Dvorkin. A formulation of general shell elements—-the use of mixed interpolation of tensorial components. International journal for numerical methods in engineering, 22(3):697—722, 1986.

[15] P Betsch, E Stein. An assumed strain approach avoiding artificial thickness straining for a non-linear 4-node shell element. Communications in Numerical Methods in Engineering, 11(11):899—909, 1995.

[16] M Bischoff, E Ramm. Shear deformable shell elements for large strains and rotations. International Journal for Numerical Methods in Engineering, 40(23):4427—4449, 1997.

[17] Manfred Bischoff, E Ramm, J Irslinger. Models and finite elements for thin-walled structures. Encyclopedia of Computational Mechanics Second Edition:1—86, 2018.

[18] SS Blemker. 3D Modeling of Complex Muscle Architecture and Geometry. 2004.

[19] Javier Bonet, Richard D. Wood. Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, 1997.

[20] D R Carter, W C Hayes. Bone compressive strength: the influence of density and strain rate. Science, 194(4270):1174-6, 1976.

[21] D R Carter, W C Hayes. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am, 59(7):954-62, 1977.

[22] Y I Cho, K R Kensey. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology, 28(3-4):241-62, 1991.

[23] JC Criscione, SA Douglas, WC Hunter. Physically based strain invariant set for materials exhibiting transversely isotropic behavior. J. Mech. Phys. Solids, 49:871-897, 2001.

[24] John C Criscione, Jay D Humphrey, Andrew S Douglas, William C Hunter. An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids, 48(12):2445—2465, 2000.

[25] A. Curnier, He Qi-Chang, P. Zysset. Conewise linear elastic materials. J Elasticity, 37(1):1-38, 1994.

[26] Y. C. Fung, K. Fronek, P. Patitucci. Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol, 237(5):H620-31, 1979. URL

[27] Y. C. Fung. Biomechanics : mechanical properties of living tissues. Springer-Verlag, 1993. URL

[28] T Christian Gasser, Ray W Ogden, Gerhard A Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface, 3(6):15-35, 2006.

[29] M.W. Gee, C.R. Dohrmann, S.W. Key, W.A. Wall. A uniform nodal strain tetrahedron with isochoric stabilization. Int. J. Numer. Meth. Engng, (78):429-443, 2009.

[30] M.J.A. Girard, J.C. Downs, C. F. Burgoyne. Peripapillary and posterior scleral mechanics - Part I: Development of an anisotropic hyperelastic constitutive model. J Biomech Eng, 131(5):051011, 2009.

[31] C.L.M. Gouget, M.J.A. Girard, C.R. Ethier. A constrained von Mises distribution to describe fiber organization in thin soft tissues. Biomechanics And Modeling in Mechanobiolgy, 11(3-4):475-482, 2012.

[32] M. H. Holmes, V. C. Mow. The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J Biomech, 23(11):1145-56, 1990. URL

[33] C Hou, G.A. Ateshian. A Gauss-Kronrod-Trapezoidal integration scheme for modeling biological tissues with continuous fiber distributions. Computer Methods in Biomechanics and Biomedical Engineering, 19(8):883-893, 2016.

[34] Jay C Hou, Steve A Maas, Jeffrey A Weiss, Gerard A Ateshian. Finite Element Formulation of Multiphasic Shell Elements for Cell Mechanics Analyses in FEBio. Journal of Biomechanical Engineering, 140(12), 2018.

[35] J. C. Iatridis, L. A. Setton, R. J. Foster, B. A. Rawlins, M. Weidenbaum, V. C. Mow. Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression. J Biomech, 31(6):535-44, 1998. URL

[36] S Klinkel, F Gruttmann, W Wagner. A continuum based three-dimensional shell element for laminated structures. Computers & Structures, 71(1):43—62, 1999.

[37] W M Lai, J S Hou, V C Mow. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J Biomech Eng, 113(3):245-58, 1991.

[38] Y. Lanir. Constitutive equations for fibrous connective tissues. J Biomech, 16(1):1-12, 1983. URL

[39] T. A. Laursen, B. N. Maker. Augmented Lagrangian quasi-newton solver for constrained nonlinear finite element applications. International Journal for Numerical Methods in Engineering, 38(21):3571-3590, 1995.

[40] T. A. Laursen, J. C. Simo. Continuum-based finite element formulation for the implicit solution of multibody, large deformation frictional contact problems. International Journal for Numerical Methods in Engineering, 36(20):3451-3485, 1993.

[41] S.A. Maas, A. Erdemir, J.P. Halloran, J.A. Weiss. A general framework for applications of prestrain to computational models of biological materials. Journal of Biomechanical Behavior of Biomedical Materials, 61:499-510, 2016.

[42] Richard H MacNeal. A simple quadrilateral shell element. Computers & Structures, 8(2):175—183, 1978.

[43] B. N. Maker. Rigid bodies for metal forming analysis with NIKE3D. University of California, Lawrence Livermore Lab Rept, UCRL-JC-119862:1-8, 1995.

[44] V.C. Mow, S.C. Kuei, W.M. Lai, C.G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. J. Biomech. Eng., 102:73-84, 1980.

[45] Ronald L Panton. Incompressible flow. John Wiley & Sons, 2006.

[46] M. A. Puso, J. A. Weiss. Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. J Biomech Eng, 120(1):62-70, 1998. URL

[47] K. M. Quapp, J. A. Weiss. Material characterization of human medial collateral ligament. J Biomech Eng, 120(6):757-63, 1998. URL

[48] J.C. Simo, R.L. Taylor. Quasi-incompressible finite elasticity in principal stretches: Continuum basis and numerical algorithms. Computer Methods in Applied Mechanics and Engineering, 85:273-310, 1991.

[49] JC Simo, F Armero, RL Taylor. Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Computer methods in applied mechanics and engineering, 110(3-4):359—386, 1993.

[50] JC Simo. On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Computer methods in applied mechanics and engineering, 60(2):153—173, 1987.

[51] Juan C Simo, MS10587420724 Rifai. A class of mixed assumed strain methods and the method of incompatible modes. International journal for numerical methods in engineering, 29(8):1595—1638, 1990.

[52] Anthony James Merril Spencer. Continuum Theory of the Mechanics of Fibre-Reinforced Composites. Springer-Verlag, 1984.

[53] A.M. Swedberg, S.P. Reese, S.A. Maas, B. J. Ellis, J.A. Weiss. Continuum description of the Poisson's ratio of ligament and tendon under finite deformation. Journal of Biomechanics, 47(12):3201-3209, 2014.

[54] D.R. Veronda, R.A. Westmann. Mechanical Characterization of Skin - Finite Deformations. J. Biomechanics, Vol. 3:111-124, 1970.

[55] L Vu-Quoc, XG Tan. Optimal solid shells for non-linear analyses of multilayer composites. I. Statics. Computer methods in applied mechanics and engineering, 192(9-10):975—1016, 2003.

[56] H Weinans, R Huiskes, H J Grootenboer. The behavior of adaptive bone-remodeling simulation models. J Biomech, 25(12):1425-41, 1992.

[57] J.A. Weiss, J.C. Gardiner, Bonifasi-Lista C. Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. Journal of Biomechanics, 35(7):943-950, 2002.

[58] J.A. Weiss, B.N. Maker, S. Govindjee. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Computer Methods in Applications of Mechanics and Engineering, 135:107-128, 1996.