Prev Subsubsection 4.1.2.16: Mooney-Rivlin Von Mises Distributed Fibers Up Section 4.1: Elastic Solids Subsubsection 4.1.3.1: Carter-Hayes Next
4.1.3 Unconstrained Materials
Unlike the materials in Section 4.1.2↑, these materials do not necessarily assume an additive decomposition of the bulk and deviatoric parts of the strain energy or stress. Further, these materials can only be used with the standard displacement-based finite element formulation, rather than the three-field element formulatoin. They should not be used for nearly-incompressible material behavior due to the potential for element locking.
Table of contents
- Subsubsection 4.1.3.1 Carter-Hayes
- Subsubsection 4.1.3.2 Cell Growth
- Subsubsection 4.1.3.3 Cubic CLE
- Subsubsection 4.1.3.4 Donnan Equilibrium Swelling
- Subsubsection 4.1.3.5 Ellipsoidal Fiber Distribution
- Subsubsection 4.1.3.6 Ellipsoidal Fiber Distribution Neo-Hookean
- Subsubsection 4.1.3.7 Ellipsoidal Fiber Distribution with Donnan Equilibrium Swelling
- Subsubsection 4.1.3.8 Fung Orthotropic Compressible
- Subsubsection 4.1.3.9 Holmes-Mow
- Subsubsection 4.1.3.10 Holzapfel-Gasser-Ogden Unconstrained
- Subsubsection 4.1.3.11 Isotropic Elastic
- Subsubsection 4.1.3.12 Orthotropic Elastic
- Subsubsection 4.1.3.13 Orthotropic CLE
- Subsubsection 4.1.3.14 Osmotic Pressure from Virial Expansion
- Subsubsection 4.1.3.15 Natural Neo-Hookean
- Subsubsection 4.1.3.16 Neo-Hookean
- Subsubsection 4.1.3.17 Coupled Mooney-Rivlin
- Subsubsection 4.1.3.18 Coupled Veronda-Westmann
- Subsubsection 4.1.3.19 Ogden Unconstrained
- Subsubsection 4.1.3.20 Perfect Osmometer Equilibrium Osmotic Pressure
- Subsubsection 4.1.3.21 Porous Neo-Hookean
- Subsubsection 4.1.3.22 Solid Mixture
- Subsubsection 4.1.3.23 Spherical Fiber Distribution
- Subsubsection 4.1.3.24 Spherical Fiber Distribution from Solid-Bound Molecule
- Subsubsection 4.1.3.25 Coupled Transversely Isotropic Mooney-Rivlin
- Subsubsection 4.1.3.26 Coupled Transversely Isotropic Veronda-Westmann
- Subsubsection 4.1.3.27 Large Poisson's Ratio Ligament