Link Search Menu Expand Document
Theory Manual Version 3.6
 Subsection A.2.3: Additional Tensor Products Up Main page

Bibliography

[1] G Aguilar, F Gaspar, F Lisbona, C24558811158 Rodrigo. Numerical stabilization of Biot's consolidation model by a perturbation on the flow equation. International journal for numerical methods in engineering, 75(11):1282—1300, 2008.

[2] M. B. Albro, N. O. Chahine, R. Li, K. Yeager, C. T. Hung, G. A. Ateshian. Dynamic loading of deformable porous media can induce active solute transport. J Biomech, 41(15):3152-7, 2008. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18922531.

[3] M. B. Albro, R. Li, R. E. Banerjee, C. T. Hung, G. A. Ateshian. Validation of theoretical framework explaining active solute uptake in dynamically loaded porous media. J Biomech, 43(12):2267-73, 2010. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20553797.

[4] E.M. Arruda, M.C. Boyce. A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials. J. Mech. Phys. Solids, 41(2):389-412, 1993.

[5] G. A. Ateshian, M. Likhitpanichkul, C. T. Hung. A mixture theory analysis for passive transport in osmotic loading of cells. J Biomech, 39(3):464-75, 2006. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16389086.

[6] G. A. Ateshian, V. Rajan, N. O. Chahine, C. E. Canal, C. T. Hung. Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J Biomech Eng, 131(6):061003, 2009. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19449957.

[7] G. A. Ateshian, T. Ricken. Multigenerational interstitial growth of biological tissues. Biomech Model Mechanobiol, 9(6):689-702, 2010. URL https://www.ncbi.nlm.nih.gov/pubmed/20238138.

[8] G. A. Ateshian, J. A. Weiss. Anisotropic hydraulic permeability under finite deformation. Journal of biomechanical engineering, 132(11):111004, 2010. URL https://www.ncbi.nlm.nih.gov/pubmed/21034145.

[9] G. A. Ateshian. Anisotropy of fibrous tissues in relation to the distribution of tensed and buckled fibers. J Biomech Eng, 129(2):240-9, 2007. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17408329.

[10] G. A. Ateshian. On the theory of reactive mixtures for modeling biological growth. Biomech Model Mechanobiol, 6(6):423-45, 2007. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17206407.

[11] G.A. Ateshian, M. B. Albro, S.A. Maas, J.A. Weiss. Finite element implementation of mechanochemical phenomena in neutral deformable porous media under finite deformation. Journal of Biomechanical Engineering, 133(8):1005-1017, 2011.

[12] GA Ateshian, SA Maas, J.A. Weiss. Finite element algorithm for frictionless contact of porous permeable media under finite deformation and sliding. J. Biomech. Engn., 132(6):1006-1019, 2010.

[13] Gerard A Ateshian, Benjamin J Ellis, Jeffrey A Weiss. Equivalence between short-time biphasic and incompressible elastic material responses. J Biomech Eng, 129(3):405-12, 2007.

[14] Gerard A Ateshian, Steve Maas, Jeffrey A Weiss. Solute transport across a contact interface in deformable porous media. J Biomech, 45(6):1023-7, 2012.

[15] Gerard A Ateshian, Jay J Shim, Steve A Maas, Jeffrey A Weiss. Finite Element Framework for Computational Fluid Dynamics in FEBio. J Biomech Eng, 140(2), 2018.

[16] Gerard A Ateshian. The role of interstitial fluid pressurization in articular cartilage lubrication. J Biomech, 42(9):1163-76, 2009.

[17] Gerard A Ateshian. Viscoelasticity using reactive constrained solid mixtures. J Biomech, 48(6):941-7, 2015.

[18] Evren U Azeloglu, Michael B Albro, Vikrum A Thimmappa, Gerard A Ateshian, Kevin D Costa. Heterogeneous transmural proteoglycan distribution provides a mechanism for regulating residual stresses in the aorta. Am J Physiol Heart Circ Physiol, 294(3):H1197-205, 2008.

[19] Klaus-Jürgen Bathe, Eduardo N Dvorkin. A formulation of general shell elements—-the use of mixed interpolation of tensorial components. International journal for numerical methods in engineering, 22(3):697—722, 1986.

[20] Klaus-Jürgen Bathe. Finite element procedures in engineering analysis. Prentice-Hall, 1982.

[21] Y Bazilevs, JR Gohean, TJR Hughes, RD Moser, Y Zhang. Patient-specific isogeometric fluid—structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput. Methods Appl. Mech. Engrg., 198(45):3534—3550, 2009.

[22] Yuri Bazilevs, Victor M Calo, Thomas JR Hughes, Yongjie Zhang. Isogeometric fluid-structure interaction: theory, algorithms, and computations. Computational mechanics, 43(1):3—37, 2008.

[23] Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic Press, 1982.

[24] P Betsch, E Stein. An assumed strain approach avoiding artificial thickness straining for a non-linear 4-node shell element. Communications in Numerical Methods in Engineering, 11(11):899—909, 1995.

[25] P. Betsch, F. Gruttmann, Stein E. A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comput. Methods Appl. Mech. Engrg, 130:57-79, 1996.

[26] M Bischoff, E Ramm. Shear deformable shell elements for large strains and rotations. International Journal for Numerical Methods in Engineering, 40(23):4427—4449, 1997.

[27] Manfred Bischoff, E Ramm, J Irslinger. Models and finite elements for thin-walled structures. Encyclopedia of Computational Mechanics Second Edition:1—86, 2018.

[28] Javier Bonet, Richard D. Wood. Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, 1997.

[29] Nicola Bonora. A nonlinear CDM model for ductile failure. Engineering fracture mechanics, 58(1-2):11—28, 1997.

[30] R.M. Bowen. Theory of mixtures. Continuum physics, 3(Pt I), 1976.

[31] Ray M. Bowen. Incompressible porous media models by use of the theory of mixtures. Int J Eng Sci, 18(9):1129-1148, 1980.

[32] Brandon K. Zimmerman, David Jiang, Jeffrey A. Weiss, Lucas H. Timmins, Gerard A. Ateshian. On the use of constrained reactive mixtures of solids to model finite deformation isothermal elastoplasticity and elastoplastic damage mechanics. Journal of the Mechanics and Physics of Solids:104534, 2021. URL https://www.sciencedirect.com/science/article/pii/S0022509621001940.

[33] Jean-Louis Chaboche. Continuous damage mechanics—-a tool to describe phenomena before crack initiation. Nuclear Engineering and Design, 64(2):233—247, 1981.

[34] Y I Cho, K R Kensey. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology, 28(3-4):241-62, 1991.

[35] John C Criscione, Jay D Humphrey, Andrew S Douglas, William C Hunter. An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids, 48(12):2445—2465, 2000.

[36] A. Curnier, He Qi-Chang, P. Zysset. Conewise linear elastic materials. J Elasticity, 37(1):1-38, 1994.

[37] Alain Curnier, Qi-Chang He, Anders Klarbring. Continuum mechanics modelling of large deformation contact with friction. In Contact mechanics . Springer, 1995.

[38] Daniel Charles Drucker. Relation of experiments to mathematical theories of plasticity. Journal of Applied Mechanics, 1949.

[39] A.C. Eringen, J.D. Ingram. Continuum theory of chemically reacting media — 1. Int J Eng Sci, 3:197 - 212, 1965.

[40] Mahdi Esmaily Moghadam, Yuri Bazilevs, Tain-Yen Hsia, Irene E Vignon-Clementel, Alison L Marsden. A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput. Mech., 48(3):277—291, 2011.

[41] James D Foley, Andries van Dam, Steven K Feiner, John F Hughes. Computer Graphics: Principles and Pract Edition. Addison-Wesley, Reading, Massachusetts, 1996.

[42] Y. C Fung, Nicholas Perrone, M Anliker. Biomechanics, its foundations and objectives. Prentice-Hall, 1972.

[43] Y. C. Fung, K. Fronek, P. Patitucci. Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol, 237(5):H620-31, 1979. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=495769.

[44] Y. C. Fung. Biomechanics : mechanical properties of living tissues. Springer-Verlag, 1993. URL https://www.loc.gov/catdir/enhancements/fy0814/92033749-t.html https://www.loc.gov/catdir/enhancements/fy0814/92033749-d.html.

[45] Y. C Fung. Biomechanics: mechanical properties of living tissues. Springer-Verlag, 1981.

[46] AE Giannakopoulos. The return mapping method for the integration of friction constitutive relations. Computers & structures, 32(1):157—167, 1989.

[47] Oscar Gonzalez. Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Computer Methods in Applied Mechanics and Engineering, 190(13):1763—1783, 2000.

[48] J. M. Guccione, A. D. McCulloch, L. K. Waldman. Passive material properties of intact ventricular myocardium determined from a cylindrical model. J Biomech Eng, 113(1):42-55., 1991. URL https://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=2020175.

[49] Osman Gültekin, Hüsnü Dal, Gerhard A Holzapfel. On the quasi-incompressible finite element analysis of anisotropic hyperelastic materials. Computational mechanics, 63(3):443—453, 2019.

[50] J Helfenstein, M Jabareen, Edoardo Mazza, S Govindjee. On non-physical response in models for fiber-reinforced hyperelastic materials. International Journal of Solids and Structures, 47(16):2056—2061, 2010.

[51] M. H. Holmes, V. C. Mow. The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J Biomech, 23(11):1145-56, 1990. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2277049.

[52] Gerhard A Holzapfel. Nonlinear solid mechanics: a continuum approach for engineering. Wiley, 2000. URL https://www.loc.gov/catdir/description/wiley035/00027315.html.

[53] A. Horowitz, I. Sheinman, Y. Lanir, M. Perl, S. Sideman. Nonlinear Incompressilbe Finite Element for Simulating Loading of Cardiac Tissue- part I: two Dimensional Formulation for Thin Myocardial Strips. Journal of Biomechanical Engineering, Transactions of the ASME, 110(1):57-61, 1988.

[54] J S Hou, M H Holmes, W M Lai, V C Mow. Boundary conditions at the cartilage-synovial fluid interface for joint lubrication and theoretical verifications. J Biomech Eng, 111(1):78-87, 1989.

[55] J.R. Hughes, Wing Kam Liu. Nonlinear Finite Element Analysis of Shells: Part I. Three-dimensional Shells. Computer Methods in Applied Mechanics and Engineering, 26:331-362, 1980.

[56] J. D. Humphrey, R. K. Strumpf, F. C. P. Yin. Determination of a constitutive relation for passive myocardium. I. A new functional form. Journal of Biomechanical Engineering, Transactions of the ASME, 112(3):333-339, 1990.

[57] J. D. Humphrey, F. C. P. Yin. On constitutive Relations and Finite Deformations of Passive Cardiac Tissue: I. A Pseudostrain-Energy Function. Journal of Biomechanical Engineering, Transactions of the ASME, 109(4):298-304, 1987.

[58] Kenneth E Jansen, Christian H Whiting, Gregory M Hulbert. A generalized- method for integrating the filtered Navier—Stokes equations with a stabilized finite element method. Comput. Methods Appl. Mech. Engrg., 190(3):305—319, 2000.

[59] Lazar M Kachanov. Rupture time under creep conditions. International Journal of Fracture, 1958.

[60] Aharon Katzir-Katchalsky, Peter F. Curran. Nonequilibrium thermodynamics in biophysics. Harvard University Press, 1965.

[61] S Klinkel, F Gruttmann, W Wagner. A continuum based three-dimensional shell element for laminated structures. Computers & Structures, 71(1):43—62, 1999.

[62] W. Michael Lai, David Rubin, Erhard Krempl. Introduction to continuum mechanics. Butterworth-Heinemann/Elsevier, 2010.

[63] Y. Lanir. Constitutive equations for fibrous connective tissues. J Biomech, 16(1):1-12, 1983. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=6833305.

[64] Torvard C. Laurent, Johan Killander. A Theory of Gel Filtration and its Experimental Verification. J Chromatogr, 14:317-330, 1963.

[65] T. A. Laursen, J. C. Simo. Continuum-based finite element formulation for the implicit solution of multibody, large deformation frictional contact problems. International Journal for Numerical Methods in Engineering, 36(20):3451-3485, 1993.

[66] Tod A. Laursen. Computational Contact and Impact Mechanics. Springer, 2002.

[67] Jean Lemaitre, Rodrigue Desmorat. Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer Science & Business Media, 2005.

[68] Jean Lemaitre. A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol., 1985.

[69] Jean Lemaitre. How to use damage mechanics. Nuclear engineering and design, 80(2):233—245, 1984.

[70] Richard H MacNeal. A simple quadrilateral shell element. Computers & Structures, 8(2):175—183, 1978.

[71] B. N. Maker. Rigid bodies for metal forming analysis with NIKE3D. University of California, Lawrence Livermore Lab Rept, UCRL-JC-119862:1-8, 1995.

[72] A Ya Malkin. Continuous relaxation spectrum-its advantages and methods of calculation. Applied Mechanics and Engineering, 11(2):235, 2006.

[73] J. E. Marsden, T. J. Hughes. Mathematical Foundations of Elasticity. Dover Publications, 1994.

[74] H. Matthies, G. Strang. The solution of nonlinear finite element equations. Intl J Num Meth Eng, 14:1613-26, 1979.

[75] R. L. Mauck, C. T. Hung, G. A. Ateshian. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering. J Biomech Eng, 125(5):602-14, 2003. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14618919.

[76] V.C. Mow, S.C. Kuei, W.M. Lai, C.G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. J. Biomech. Eng., 102:73-84, 1980.

[77] Robert J Nims, Gerard A Ateshian. Reactive constrained mixtures for modeling the solid matrix of biological tissues. Journal of Elasticity, 129(1-2):69—105, 2017.

[78] Robert J Nims, Krista M Durney, Alexander D Cigan, Antoine Dusséaux, Clark T Hung, Gerard A Ateshian. Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering. Interface Focus, 6(1):20150063, 2016.

[79] A. G. Ogston, C. F. Phelps. The partition of solutes between buffer solutions and solutions containing hyaluronic acid. Biochem J, 78:827-33, 1961. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=13730460.

[80] Ronald L Panton. Incompressible flow. John Wiley & Sons, 2006.

[81] Konstantinos Poulios, Yves Renard. An unconstrained integral approximation of large sliding frictional contact between deformable solids. Computers & Structures, 153:75—90, 2015.

[82] M. A. Puso, J. A. Weiss. Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. J Biomech Eng, 120(1):62-70, 1998. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9675682.

[83] Michael Anthony Puso. An energy and momentum conserving method for rigid—flexible body dynamics. International Journal for numerical methods in engineering, 53(6):1393—1414, 2002.

[84] K. M. Quapp, J. A. Weiss. Material characterization of human medial collateral ligament. J Biomech Eng, 120(6):757-63, 1998. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10412460.

[85] Yu N Rabotnov. Elements of hereditary solid mechanics. MIT Publishers, Moscow, 1980.

[86] J. N. Reddy, David K. Gartling. The finite element method in heat transfer and fluid dynamics. CRC Press, 2001. URL Publisher description https://www.loc.gov/catdir/enhancements/fy0646/00048638-d.html.

[87] J. N. Reddy. An introduction to continuum mechanics : with applications. Cambridge University Press, 2008. URL Table of contents only https://www.loc.gov/catdir/toc/ecip0720/2007025254.html Contributor biographical information https://www.loc.gov/catdir/enhancements/fy0729/2007025254-b.html Publisher description https://www.loc.gov/catdir/enhancements/fy0729/2007025254-d.html.

[88] Carlo Sansour. On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy. European Journal of Mechanics-A/Solids, 27(1):28—39, 2008.

[89] Roger A Sauer, Laura De Lorenzis. An unbiased computational contact formulation for 3D friction. International Journal for Numerical Methods in Engineering, 101(4):251—280, 2015.

[90] Jay J Shim, Gerard A Ateshian. A hybrid biphasic mixture formulation for modeling dynamics in porous deformable biological tissues. Archive of Applied Mechanics:1—21, 2021.

[91] Jay J Shim, Steve A Maas, Jeffrey A Weiss, Gerard A Ateshian. A Formulation for Fluid Structure-Interactions in FEBio Using Mixture Theory. J Biomech Eng, 2019.

[92] J Ci Simo, TA Laursen. An augmented Lagrangian treatment of contact problems involving friction. Computers & Structures, 42(1):97—116, 1992.

[93] J.C. Simo, F. Armero. Geometrically Non-linear Enhanced Strain Mixed Methods and the Method of Incompatible Modes. International Journal for Numerical Methods in Engineering, 33:1413-1419, 1992.

[94] J.C. Simo, R.L. Taylor. Quasi-incompressible finite elasticity in principal stretches: Continuum basis and numerical algorithms. Computer Methods in Applied Mechanics and Engineering, 85:273-310, 1991.

[95] JC Simo, F Armero, RL Taylor. Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Computer methods in applied mechanics and engineering, 110(3-4):359—386, 1993.

[96] JC Simo, Nils Tarnow. The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Zeitschrift für angewandte Mathematik und Physik (ZAMP), 43(5):757—792, 1992.

[97] JC Simo. On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Computer methods in applied mechanics and engineering, 60(2):153—173, 1987.

[98] Juan C Simo, JW Ju. Strain-and stress-based continuum damage models—-I. Formulation. International journal of solids and structures, 23(7):821—840, 1987.

[99] Juan C Simo, MS10587420724 Rifai. A class of mixed assumed strain methods and the method of incompatible modes. International journal for numerical methods in engineering, 29(8):1595—1638, 1990.

[100] Anthony James Merril Spencer. Continuum Theory of the Mechanics of Fibre-Reinforced Composites. Springer-Verlag, 1984.

[101] D. N. Sun, W. Y. Gu, X. E. Guo, W. M. Lai, V. C. Mow. A mixed finite element formulation of triphasic mechano-electrochemical theory for charged, hydrated biological soft tissues. Int J Numer Meth Eng, 45(10):1375-402, 1999. URL https://dx.doi.org/10.1002/(SICI)1097-0207(19990810)45:10<1375::AID-NME635>3.0.CO;2-7.

[102] I. Tinoco Jr., K. Sauer, J. C. Wang. Physical chemistry : principles and applications in biological sciences. Prentice Hall, 1995.

[103] C. Truesdell, R. Toupin. The classical field theories. Springer, 1960.

[104] M Tur, FJ Fuenmayor, P Wriggers. A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Computer Methods in Applied Mechanics and Engineering, 198(37):2860—2873, 2009.

[105] K. Un, R. L. Spilker. A penetration-based finite element method for hyperelastic 3D biphasic tissues in contact. Part II: finite element simulations. J Biomech Eng, 128(6):934-42, 2006. URL https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17154696.

[106] D.R. Veronda, R.A. Westmann. Mechanical Characterization of Skin - Finite Deformations. J. Biomechanics, Vol. 3:111-124, 1970.

[107] Irene E Vignon-Clementel, C Alberto Figueroa, Kenneth E Jansen, Charles A Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Engrg., 195(29):3776—3796, 2006.

[108] L Vu-Quoc, XG Tan. Optimal solid shells for non-linear analyses of multilayer composites. I. Statics. Computer methods in applied mechanics and engineering, 192(9-10):975—1016, 2003.

[109] J.A. Weiss, B.N. Maker, S. Govindjee. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Computer Methods in Applications of Mechanics and Engineering, 135:107-128, 1996.

[110] P Wriggers, Tod A Laursen. Computational contact mechanics. Springer, 2007.

[111] P Wriggers. Computational contact mechanics. Springer, 2006. URL https://www.loc.gov/catdir/enhancements/fy0663/2006922005-d.html.

[112] Peter Wriggers, T Vu Van, Erwin Stein. Finite element formulation of large deformation impact-contact problems with friction. Computers & Structures, 37(3):319—331, 1990.

[113] Giorgio Zavarise, Laura De Lorenzis. The node-to-segment algorithm for 2D frictionless contact: classical formulation and special cases. Computer Methods in Applied Mechanics and Engineering, 198(41):3428—3451, 2009.

[114] Brandon K Zimmerman, Gerard A Ateshian. A Surface-to-Surface Finite Element Algorithm for Large Deformation Frictional Contact in febio. J Biomech Eng, 140(8), 2018.

[115] Brandon Zimmerman, Steve A Maas, Jeffrey A Weiss, Gerard A Ateshian. A Finite Element Algorithm for Large Deformation Biphasic Frictional Contact Between Porous-Permeable Hydrated Soft Tissues. J Biomech Eng, 2021.

[116] C Agelet de Saracibar. A new frictional time integration algorithm for large slip multi-body frictional contact problems. Computer Methods in Applied Mechanics and Engineering, 142(3-4):303—334, 1997.