Link Search Menu Expand Document
Theory Manual Version 3.6
 Subsection 5.7.1: Elastic-Perfectly Plastic Response Up Section 5.7: Reactive Plasticity Subsection 5.7.3: Constitutive Modeling of Yield Response 

5.7.2 Kinematic “Hardening” Response

The framework presented in Section 5.7.1↑ has considered an elastic-perfectly plastic response, i.e., all the bonds yield when a single yield threshold is met. However, a wealth of experimental results show a more progressive yielding, rather than a sudden onset, and an increase in the stress with increasing plastic deformation, a phenomenon alternately termed strain hardening or work hardening. Real materials typically exhibit the Bauschinger effect, where loading to yield in one direction changes the yield threshold in the reverse direction. The hardening behavior that accounts for this effect is known as kinematic hardening; for a load reversal, it predicts yielding occurs when the change in load achieves twice the monotonic yield strength. The reactive plasticity framework can be extended to allow for kinematic hardening by introducing multiple families of bonds. In the current FEBio implementation each bond family shares the same yield criterion but distinct associated yield thresholds , and it follows the elastic-perfectly plastic behavior for multiple generations outlined in Section 5.7.1↑. The superposition of multiple bond families in parallel naturally develops behavior consistent with kinematic hardening, as different bond families yield at different thresholds.
We consider bond families , which may yield under different thresholds, where each bond family may evolve over multiple generations . This framework requires us to update our notation to include a subscript for suitable variables introduced in the presentation above. In particular, the reference configuration of generation in bond family is now denoted by and the corresponding deformation gradient is . We assume that the free energy density of each bond family is , when the mixture consists entirely of bonds of family in generation . The master reference configuration of all bond families remains and the associated (total) deformation gradient is still . Therefore, each bond family requires a constitutive relation for the function of state in the updated form of eq.(2.8.1-2), such as that given in eq.(5.7.1-4), where each term should now include a subscript .
The referential mass density of bond family is , such that the mixture referential mass density is given by . The referential mass density of generation in bond family is , which satisfies , as per eq.(2.8.2-3). For convenience, we define which represents the mass fraction of each bond family within the constrained solid mixture, and which represents the mass fraction of each generation within the bond family . From these definitions, it follows that bond family mass fractions are time-invariant (thus user-selected for a particular material response), whereas generation mass fractions evolve with bond-breaking-and-reforming reactions.
The mixture strain energy density is now given by whereas the mixture stress is To simplify the remainder of this presentation, we introduce the concept of yielded bonds, denoted by , to represent bonds of the current extant generation in a plasticity formulation. The yielded bond fraction for each family is given by where the summation runs over all possible yielded generations . In particular, at time , eq.(5.7.2-5) reduces to the statement . We then define the relative deformation gradient of yielded bonds as , which equals for the extant generation in family . With these notational changes, we may write the yielding reactions in the form Then the mixture stress in eq.(5.7.2-4) may be rewritten as where . We may also define the total fraction of intact bonds in the mixture as , and the total fraction of yielded bonds as , such that . Then . The summation in this last expression does not simplify further since is different for each bond family .
Let each bond family exhibit an elastic-perfectly plastic response, following the model of Section 5.7.1↑. Once the yield threshold is reached, all the intact bonds of that family yield at once, such that and as shown for the mixture stress response in Figure 5.1↓a-c. Now consider that there are three bond families, which are weighted evenly, . The stress response for this illustrative example is shown in Figure 5.1↓d-f. Though each bond family is elastic-perfectly plastic, their superposition develops “hardening”-like behavior. At the onset of yielding, when family yields, its bond mass fractions are and , implying that this entire family has yielded. However, since the family has a mass fraction in the solid mixture, two-thirds of the bonds in the mixture remain intact at this juncture, . As subsequent families yield, their bonds transition from intact to yielded generations in the same manner. Though the resulting stress response in Figure 5.1↓d is classically described as a “hardening” behavior, the reactive plasticity mixture framework proposes a different interpretation, namely that there are multiple elastic-perfectly plastic bond families in the material, each with a different threshold of yielding.
figure ../Figures/FigReactivePlasticityStress.png
Figure 5.1 The phenomenon described as “kinematic hardening” in classical plasticity may be represented by the superposition of multiple elastic-perfectly plastic bond families with different yield thresholds. The elastic-perfectly plastic stress response of a single bond family in the reactive framework is presented in (a), with the initial linear response contributed by the intact bonds ; upon yielding at the threshold , the perfectly plastic response consists of multiple generations of breaking and reforming bonds . The evolution of mass fractions of intact and of yielded bonds is presented in (b) and (c), respectively. The stress response obtained from the superposition of three bond families is shown in (d), where each family occupies the same mass fraction in the mixture, , reproducing the classical kinematic hardening behavior. Green dashed lines help indicate changes in slope due to yielding of each bond family. The corresponding mixture mass fractions of (e) intact bonds , and (f) yielded bonds further illustrates the occurence of each yielding reaction.
For each bond family , the family mass fraction and the associated yield threshold must be provided by constitutive assumption, along with a single constitutive model for which applies to all generations of all bond families. The total number of bond families must also be provided. Parameters and suffice to define an elastoplastic material which exhibits classical kinematic hardening behavior, for a given elastic response and yield criterion .
 Subsection 5.7.1: Elastic-Perfectly Plastic Response Up Section 5.7: Reactive Plasticity Subsection 5.7.3: Constitutive Modeling of Yield Response